Search Results/Filters    

Filters

Year

Banks



Expert Group










Full-Text


Author(s): 

MOULAVI A.A.

Issue Info: 
  • Year: 

    2007
  • Volume: 

    65
  • Issue: 

    3
  • Pages: 

    13-16
Measures: 
  • Citations: 

    0
  • Views: 

    798
  • Downloads: 

    0
Abstract: 

Background: Accurate computation of the radiation dose to the breast is essential to mammography. Various the thicknesses of breast, the composition of the breast tissue and other variables affect the optimal breast dose. Furthermore, the glandular fraction, which refers to the composition of the breasts, as partitioned between radiation-sensitive glandular tissue and the adipose tissue, also has an effect on this calculation. Fatty or fibrous breasts would have a lower value for the glandular fraction than dense breasts.Breast tissue composed of half glandular and half adipose tissue would have a glandular fraction in between that of fatty and dense breasts. Therefore, the use of a computational code for average glandular dose calculation in mammography is a more effective means of estimating the dose of radiation, and is accurate and fast.Methods: In the present work, the Sobol-Wu beam quality parameters are used to write a FORTRAN code for glandular dose calculation in molybdenum anode-molybdenum filter (Mo-Mo), molybdenum anode-rhodium filter (Mo-Rh) and rhodium anode-rhodium filter (Rh-Rh) target-filter combinations in mammograms. The input parameters of code are: tube voltage in kV, half-value layer (HVL) of the incident x-ray spectrum in mm, breast thickness in cm (d), and glandular tissue fraction (g).Results: The average glandular dose (AGD) variation against the voltage of the mammogram X-ray tube for d = 4 cm, HVL = 0.34 mm Al and g=0.5 for the three filter target combinations, as well as its variation against the glandular fraction of breast tissue for kV=25, HVL=0.34, and d=4 cm has been calculated. The results related to the average glandular absorbed dose variation against HVL for kV = 28, d=4 cm and g= 0.6 are also presented. The results of this code are in good agreement with those previously reported in the literature.Conclusion: The code developed in this study calculates the glandular dose quickly, and it is complete and accurate. Furthermore, it is user friendly and useful for dose optimizing in mammography imaging.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 798

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2013
  • Volume: 

    44
  • Issue: 

    2
  • Pages: 

    95-107
Measures: 
  • Citations: 

    0
  • Views: 

    1667
  • Downloads: 

    0
Abstract: 

Quake isolation is a comparatively new method for designing earthquake-resisting buildings. Instead of increasing the resistance of the structure against lateral pressures, this method is based on reducing the pressures on it. Economic expenses comparing with other methods are against widespread application of this technology. Therefore, this paper, aiming at the economic aspects of this method, considering the present approach of the codes, focusing on this method’s applicatory and practical aspects, making changes in prevailing processes of designing structures, and using optimization technology of genetic algorithm, presents a program in FORTRAN environment. This program is, in fact, a combination of the programs of isolation designing and that of genetic algorithm optimization, and its main goal is to reduce the expenses of isolating structures, considering the applicatory and practical aspects of this technology. Based on the dimensions of a certain site, this program is able to examine the various plans of columniation while considering the matters related to superstructure and implementation and finally suggest a plan which leads to the production of an isolation system with lower expenses.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1667

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2019
  • Volume: 

    8
  • Issue: 

    4
  • Pages: 

    53-66
Measures: 
  • Citations: 

    0
  • Views: 

    472
  • Downloads: 

    0
Abstract: 

Explosion problems can be examined in different environments. Due to the lesser-known nature of soil types and extent of the equations of state, explosion problems need careful analysis. Because of difficulties in laboratory explosion modeling, numerical models use to analyze this phenomenon Using the SPH methodology avoids the disadvantages of traditional numerical methods in treating large diformations in the extremely transient explosion process. Since explosion crater in the soil is an important problem and most of the studies are experimental, In this article it is tried to investigate the craters diameter and height caused by the different amounts of explosives. The model is programmed with FORTRAN language and smooth particle hydrodynamics, SPH, the craters, pressure caused by the explosion in the soil and the soil surface changes are also studied. To validate the model, the results of a laboratory study were used and it is shown that they are consistent with the numerical results of this study. Finally, craters in a two layer soil is studied. This program can be used for modeling of soil explosion and craters.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 472

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2022
  • Volume: 

    11
  • Issue: 

    1
  • Pages: 

    41-48
Measures: 
  • Citations: 

    0
  • Views: 

    24
  • Downloads: 

    0
Keywords: 
Abstract: 

One of the issues of reliable performance in the power grid is the existence of electromechanical oscillations between interconnected generators. The number of generators participating in each electromechanical oscillation mode and the frequency oscillation depends on the structure and function of the power grid. In this paper, to improve the transient nature of the network and damping electromechanical fluctuations, a decentralized robust adaptive control method based on dynamic PROGRAMMING has been used to design a stabilizing power system and a complementary static var compensator (SVC) controller. By applying a single line to ground fault in the network, the robustness of the designed control systems is demonstrated. Also, the simulation results of the method used in this paper are compared with controllers whose parameters are adjusted using the PSO algorithm. The simulation results show the superiority of the decentralized robust adaptive control method based on dynamic PROGRAMMING for the stabilizing design of the power system and the complementary SVC controller. The performance of the control method is tested using the IEEE 16-machine, 68-bus, 5-area is verified with time domain simulation.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 24

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    70
  • Issue: 

    1
  • Pages: 

    87-100
Measures: 
  • Citations: 

    0
  • Views: 

    679
  • Downloads: 

    0
Abstract: 

Hydrological Simulation FORTRAN Program (HSPF) has long been used in modeling watersheds and many studies have been carried out around the world in this regard. Hablerood watershed is located in Semnan province with an area of 3200 km2 which suppies the required water, especially for farming, in Garmsar plain. Previous studies on daily step and related to hydrology and water resources in this watershed were limited to computation of statistics summaries of daily stream flows. Therefore, simulation of daily stream flows is very important. In this research, the parameters of HSPF model were estimated and the results of model in current conditions with minimum data availability are discussed. In general, it was found out that since the model performance using Win HSPF has high errors in metric system, English system must be used in stead. Also, due to the model’s need to hourly time series data, more detailed information about Hydrological components, and other terrestrial data as well as due to low accuracy of these data and model’s objection in some cases such as using the mean of infiltration parameter for a given land use segment and the lack of certain criteria in watershed delineation, high errors occurred in daily stream flow simulation with the Nash-Sutcliffe model efficiency coefficient of 0.77 and 0.18 as well as 0.468 and 0.49 for R2 in calibration and validation period, respectively. Also, simulated flows in late spring are higher than observed value, while in late summer through fall are lower than observed value. Finally, at the end of the paper we discuss the solution to obtain better results.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 679

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

MOULAVI A.A.

Issue Info: 
  • Year: 

    2006
  • Volume: 

    3
  • Issue: 

    10
  • Pages: 

    69-73
Measures: 
  • Citations: 

    0
  • Views: 

    969
  • Downloads: 

    0
Abstract: 

Introduction: To write a computational program to calculate the average glandular dose in Mammography with Rh-Rh target-filter and also use it as an accurate and fast method of dose calculation founder different situations.Materials and Methods: In this research, the Sobol-Wu parameters are used to write a FORTRAN code for glandular dose calculation in Rh-Rh target-filter mammograms. The code calculates the glandular dose for Rh-Rh target-filter mammograms for the input parameters such as tube voltage in kV scale, half-value layer (HVL) of the incident x-ray spectrum in mm Al, breast thickness in cm and glandular tissue fraction (g).Results: The average glandular dose variation has been calculated against the voltage of mammogram X-ray tube for d = 5 cm, HVL = 0.35 mm Al and different value of g. Also the results related to the average glandular absorbed dose variation per unit roentgen against the glandular fraction of breast tissue for kV=28, HVL = 0.387 mm Al and different value of d are presented. Discussion and Conclusion: The results of this research are in good agreement with the computational results of J. M. Boone and the experimental results of E. L. Gingold et al. Also the code is fast, accurate and user friendly, that can be used for dose optimization in mammography imaging.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 969

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

MOWLAVI ALI ASGHAR

Issue Info: 
  • Year: 

    2011
  • Volume: 

    8
  • Issue: 

    1 (30)
  • Pages: 

    65-71
Measures: 
  • Citations: 

    0
  • Views: 

    957
  • Downloads: 

    0
Abstract: 

Introduction: Average glandular dose calculation in mammography with Mo-Rh target-filter and dose calculation for different situations is accurate and fast.Material and Methods: In this research, first of all, x-ray spectra of a Mo target bombarded by a 28 keV electron beam with and without a Rh filter were calculated using the MCNP code. Then, we used the Sobol-Wu parameters to write a FORTRAN code to calculate average glandular dose.Results: Average glandular dose variation was calculated against the voltage of the mammographic x-ray tube for d=5 cm, HVL=0.35 mm Al, and different value of g. Also, the results related to average glandular absorbed dose variation per unit roentgen radiation against the glandular fraction of breast tissue for kV=28 and HVL= 0.400 mmAl and different values of d are presented. Finally, average glandular dose against d for g=60% and three values of kV (23, 27, 35 kV) with corresponding HVLs have been calculated.Discussion and Conclusion: The absorbed dose computational program is accurate, complete, fast and user friendly. This program can be used for optimization of exposure dose in mammography. Also, the results of this research are in good agreement with the computational results of others.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 957

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2017
  • Volume: 

    8
  • Issue: 

    2
  • Pages: 

    161-169
Measures: 
  • Citations: 

    0
  • Views: 

    1238
  • Downloads: 

    0
Abstract: 

An accurate and safer analysis for structure is possible if we can identify factors in the analysis more accurately.One of the important factors in the analysis is the identification the kind and intensity of structural loading. Among the types of loading, especially dynamic loads and impact loads resulting from the explosion, is far more complicated and difficult to determine. According to lab explosion modeling problems, using numerical modeling to analyze these phenomena can be reasonable. Uses grid methods like Finite element method caused a numerical error due to intense deformation and high velocity of blast. In this paper, underwater explosion was modeled and programmed with numerical mesh-less method, Smooth Particle Hydrodynamics (SPH), using FORTRAN PROGRAMMING language and explosion pressure and water level changes in the blast were studied. Finally the solving problem is compared with empirical relation. The results of this model are very similar to empirical relationship. This program can be used for underwater explosions modeling and the results can be used to determine pressures and impacts on marine structures.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1238

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Author(s): 

MAFI ROUH ELAH | DELDARI H.

Issue Info: 
  • Year: 

    2007
  • Volume: 

    5
  • Issue: 

    2
  • Pages: 

    69-78
Measures: 
  • Citations: 

    0
  • Views: 

    1182
  • Downloads: 

    0
Abstract: 

Computational grids have provided the usage of computational distributed resources for computation-intensive applications. The development of programs that use these capabilities is one of the challenging issues for grid computing. In this article, an effort has been made in order to solve this problem by presenting mobile-agent-based parallel PROGRAMMING on the grid. The presentation of this model, which has been materialized by extending Alchemi™ grid infrastructure, adding agent properties and navigational commands that let the user to develop his/her program by using agents’ mobility and communication between them. In order to evaluate the system, algorithm of matrix multiplication as well as algorithm of finding the convex hull of a series of points has been implemented in the mentioned system.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 1182

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
Issue Info: 
  • Year: 

    2023
  • Volume: 

    9
  • Issue: 

    2
  • Pages: 

    48-74
Measures: 
  • Citations: 

    0
  • Views: 

    24
  • Downloads: 

    3
Abstract: 

This paper aims to investigate the effects of uncertainty in soil characteristics and dam geometry on seepage flow using the hybrid Multivariate Adaptive Regression Splines (MARS) and Monte Carlo Method (MCM). A computer program based on Darcy flow is developed in the FORTRAN language to calculate the discharge flow. After validating the numerical FORTRAN code with experimental outputs, firstly, the Deterministic Finite Element Method (DFEM) was used to obtain Seepage Exit Discharge (SED) in Steady State Condition (SSC), and MCM was used for probabilistic analysis to account for uncertainty in random parameters. The program monitored Pore Water Pressure (PWP) changes and integrated them into the time/space domains. To ensure minimal error, the results of the models were compared by Standard Error Calculation (SEC). The research also introduced a new component to compare the seepage flow resulting from the analysis of models in a dimensionless manner called the Effective Discharge MARSplines (EDM). In the present research, the combination of Machine Learning (ML) and MCM algorithms was used in an innovative way for Random Finite Element Method (RFEM) calculations. The results of the research indicate that a 17.9% increase in the Hd/Hu ratio in the deterministic analysis results in a 29.3% decrease in EDM, while in the probabilistic analysis, a similar increase leads to a 19.02% decrease in EDM. Upon comparing deterministic and stochastic models, it can be concluded that deterministic analysis is more accurate and exhibits less error when compared to the probabilistic model.

Yearly Impact: مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

View 24

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesDownload 3 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesCitation 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic ResourcesRefrence 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button